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The Amplifier Design Wizard (ADW) is a synthesis tool for RF and microwave impedance-matching
networks and amplifiers. The focus in the ADW is on controlling the intrinsic load terminations
presented to the transistors used. In doing so the modes of operation are also controlled. When
available, load-pull or source-pull targets can also be used in the ADW.

A structured design approach is provided in the ADW. Amplifiers are designed stage by stage by
using lossless impedance-matching networks, as well as lossy sections (resistive loading and/or
feedback sections). Lossy sections are required for stability and gain levelling, as well as for reducing
the gain-bandwidth constraints of wideband impedance-matching problems. Small-signal amplifiers
(low noise or low power), as well as high-efficiency amplifiers can be designed with the ADW.

For high accuracy, external EM simulation of at least the microstrip discontinuities in an ADW circuit
is required. The EM S-parameters can be used directly in ADW S-parameter based junction models
or can be used to optimize the parameters of the standard discontinuity models used in the ADW. To
make the process efficient, the implicit discontinuities in an ADW circuit can be separated out
automatically and can then be exported for EM simulation. The ADW artwork can be exported to
Sonnet Software®s EM, or via “.bas” script to Microwave Office™ and via DXF to other CAD
packages. If the naming conventions used are maintained, the simulation results can be imported
back into the ADW with minimal effort.

ADW circuits are usually exported to a harmonic-balance simulator for further processing.
Measurements or the results obtained with harmonic-balance non-linear transistor models can be
used to fine-tune the transistor models fitted in the ADW.

A set of wideband S-parameters and the information generally available in data sheets are required
to fit a transistor model in the ADW. DC or pulsed I/V-curves are required to set accurate boundaries
for the allowable intrinsic load line area, but if these curves are not available, estimates can be used.
The power and efficiency calculations and the load-pull capabilities (CIL wizard; see Figure 1) in the
ADW are based on clipping theory [1]. With five boundary lines defining the allowable load line
area and the introduction of power parameters to map the intrinsic load termination to the external
terminations [2], clipping theory has been extended to a fully useful point in the ADW. A
compression curve [3] and fitting factors are used to model the compressed behaviour.
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Figure 1. The impedance-matching and modification networks wizards provided in the ADW.



Coefficients for a typical C(V) profile can be specified in the ADW for the output capacitance (Cgs)
of a transistor. The effect of this nonlinearity on a design [4, 5] can then be evaluated in the ADW
and the design can be optimized for this effect, if necessary.
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Figure 2.  Examples of the ADW constant power contours and maximum efficiency lines.

Extensive impedance-matching capabilities [2] are provided in the ADW. The fundamental-
frequency performance, as well as the second-harmonic performance and the third-harmonic
performance can be controlled. The targets at the fundamental frequencies can be points or circles,
while a reactance range or a Smith chart sector can be targeted at each harmonic. The CIL wizard
can be used to setup the specifications for the load impedance-matching network of a power
transistor. It can also be used to setup interstage-matching problems. The IIM wizard (see Figure 1)
is used to setup the specifications for the input matching network.

The ADW can define target areas for the load matching network of a transistor by using continuous-
mode theory [6, 7, 8], or by using power contours and maximume-efficiency lines or areas [9]. The
reference plane for all the targets is the insertion point of the matching network. Power parameters
[2] are used to map the intrinsic terminations to the associated terminations at the insertion point.

Constant output power or constant effective output power contours can be created by the CIL wizard.
The best efficiency point on each power contour is marked by the maximum efficiency line (see
Figure 2). The maximum efficiency line is on the voltage clipping side of each power contour. The
intrinsic load impedance is purely resistive on the maximum efficiency line. Two additional lines can
also be created for the minimum acceptable efficiency. The intrinsic load reactance is positive on one
of these lines and negative on the other (see Figure 3).

The minimum acceptable (drain) efficiency targeted in the Figure 3 example was 58%. The power in
the highlighted section is higher than the power specified for the lowest power contour and the
efficiency is higher than 58%.
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Figure 3. ADW constant power contours and the efficiency lines for a transistor at 1.3GHz. The power in the

highlighted section is higher than the power specified for the lowest power contour and the efficiency

is higher than the minimum acceptable efficiency specified.
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Figure 4. The different options provided for fitting a circle to be used as a fundamental-frequency target in the

matching module of the ADW.



The ADW can fit circles to the areas defined by the contours targeted and the efficiency lines used.
The circles fitted are classified in four categories (See Figure 4). Type A and type B circles are fitted
to the contours targeted. A type A circle is centred on the peak power point, while a type B contour
is centred on the contour itself. The diameter of a type C circle is defined by the optimum efficiency
point on the contour targeted and the peak power point. The centre of a type D circle is the optimum
point (usually the point with highest efficiency) on the contour targeted. The minimum acceptable
efficiency lines and the maximum efficiency line are used to define the radius of a type D circle.
When a type D circle is fitted, the intrinsic load reactance can be constrained to be only inductive or
only capacitive (see Figure 5). Type D circles restricted to inductive intrinsic load terminations were
fitted to the contours and efficiency lines shown in Figure 6.
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Figure 5. Type D circles restricted to inductance (LHS) and capacitive (RHS) intrinsic load impedances.
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Figure 6. Type D circles restricted to inductive intrinsic load terminations were fitted to the power contours shown

here.



In addition to the power contours and efficiency lines, various options are also provided in the ADW
to control the intrinsic load terminations directly. These include setting targets for standard Class-B,
Class-B/J, Class-F, and inverse Class-F operation, as well as the associated continuous classes. The
second-harmonic clipping contours technique [8] has also been implemented in the ADW. Targets
can also be set for Class-B2 operation. (Approximate half-sinusoids for both the intrinsic output
voltage and the intrinsic output current.)

The approximate intrinsic opens or shorts required in some classes of operation can be a problem if
the passband is relatively wide. If an exact intrinsic open or short is targeted over the passband, the
reflection coefficient required at the external reference plane will rotate anti-clockwise with
increasing frequency. This is an issue because passive networks can only provide clockwise rotation.
Clockwise rotation may be obtained if low or high impedances with clockwise rotation of the
reflection coefficient are targeted instead (see Figure 7).
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Figure 7. When approximate shorts or opens are required at all the frequencies in a harmonic band, the option to

target clockwise rotation of the second harmonic and the third-harmonic targets with increasing frequency
is provided.

Figure 8.  An example of the fundamental-frequency (blue trace) and second and third harmonic targets (harmonic
markers) generated for a class-B2 amplifier stage.

Fundamental-frequency and second- and third-harmonic targets for the load matching network of a
Class-B2 amplifier stage are shown in Figure 8. The rotation of the harmonic targets is clockwise
with increasing frequency for both the second and third harmonics. Exact intrinsic shorts or opens
are not required in a class-B2 stage at the second or the third harmonics.



Second-harmonic clipping contours [8] can also be plotted in the ADW. With the intrinsic output
current of the transistor assumed to be an undistorted half-sinusoid of fixed amplitude and intrinsic
shorts at the third and higher harmonics, a clipping contour defines the second-harmonic area for no
distortion in the voltage waveform (that is, Vo(t) >= 0.0) when a specific intrinsic fundamental-
frequency load impedance is targeted. The output power and the drain efficiency are constant over
the area defined by a clipping contour. In the ADW, the clipping contours are clipped at the edge of
the Smith Chart, but the actual contours will extend into the negative resistance area.

The clipping contours were derived for an ideal transistor. Any boundary line (knee) effects were
ignored. To allow for the reduction in the voltage swing because of clipping on an intrinsic 1/V-plane
boundary line (see Figure 9), the effective dc voltage should be used in the clipping equations instead
of the actual dc voltage. The effective dc voltage is the difference between the actual dc voltage and
the boundary line intercept voltage for the load termination used (Vk, Ve or V: in Figure 9). The
clipping contour current level is also set by the intercept point (lk, le or It).
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Figure 9. The effective dc voltage and the current to be used for a clipping contour are set by the boundary line
intersect with the intrinsic load resistance (continuous-mode operation assumed).
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Figure 10.  The harmonic control options provided in the ADW for the base classes. The clipping contour options are
provided for Class-B and Class-F stages.



If the effective dc voltage is used in the clipping contour equations, the clipping contours will just
touch the Smith chart edge and there will be no positive resistance second-harmonic clipping area.
Allowance is made for a scale factor in the ADW to scale the correction applied to the clipping
contour dc voltage down to a value lower than the boundary intercept voltage (see Figure 11). This
will leave some excess voltage in place for the clipping contours. If hard clipping is assumed, there
can be no excess voltage. Interaction with the knee will allow for some excess (wave shaping). To
minimize distortion and loss in performance (power and efficiency), the excess should be kept as
small as possible for the passband targeted. Because the excess voltage allowed has no real basis the
performance will be degraded for points away from the optimum and deeper into the clipping area.
The usefulness of the clipping contours is in limiting the degradation in the performance (no free
pass).

Figure 11.  The positive resistance clipping contour area is proportional to the excess voltage specified in the clipping
contour equations. If the full effect of the knee (boundary clipping) is considered, there will be no excess
voltage. The scale factors used for the correction voltages were 0.95, 0.5 and 0.0, respectively.
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Figure 12. The input reflection coefficients of a matching network designed with second-harmonic clipping contours
are shown here with the clipping contours and the third-harmonic targets.

A narrowband (1.0 — 1.4 GHz) second-harmonic clipping contour example is provided in Figure 12.
The clipping contours at four frequencies in the passband targeted are shown (red to green harmonic
markers). The blue to yellow harmonic markers are used for the third-harmonic intrinsic terminations
targeted (approximate shorts). The green traces marked 1, 2 and 3 are the reflection coefficients of a
matching network at the fundamental frequencies and the second and third harmonics, respectively.
The intrinsic load impedances and the dynamic load lines for the clipping contour network
synthesized are shown in Figure 13.
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Figure 13.  The intrinsic impedances and dynamic load lines associated with the matching network synthesized to
solve the clipping contour problem in Figure 12.

With the impedance targets set, matching networks can be designed with the ADW Matching module.
Lumped-element, commensurate distributed, non-commensurate distributed and mixed
lumped/distributed networks can be designed in the Matching module. The IIM wizard (CMA option)
can be used to design phase-controlled matching networks based on T- or Pl-sections [10] in the
Analysis module and the DSLT wizard can be used to design stepped-line transformers for purely
resistive matching problems.

The options provided by the DSLT wizard are shown in Figure 14. The ADW schematic element to
the left of the insertion point for the transformer to be synthesized must be selected before the DSLT
wizard is launched. This is illustrated in Figure 15. The artwork for a stepped Klopfenstein taper [11]
is shown in Figure 16 with the gain and the input reflection coefficients. Note the equiripple
performance. The insertion loss for the taper is 0.42dB in the passband (1.0 — 2.75 GHz) and 1.1dB
at 13.75 GHz (fifth harmonic). The length of the taper is 69mm. The electrical length of a
Klopfenstein taper is around 180° at the lowest passband frequency. Using a stepped-line taper is
generally better than using stepped lines (first three options in Figure 14) when two or more stepped
sections are required.
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Figure 14.  The stepped transformer options provided by the DSLT wizard.



\—) Project Analysis Schematic
: Views Project Analysis Optimization Schematic Editing Elements Blocks Jundtions Microstrip I;lealdq

4 8 sl

DSIT © M Maximum @ CIR CIL V1 ovl : MOT
. * FFLL Power .

DMNEHBOE 9% B80T E -
ADWGMTaper_DSLT.ani - Gain and Input Reflection Graph  x

Niz

6.62500  50.00
1.0° 1.0° (F=2.75GHz; GT)
——

Schematic Insert Option >

Insert Position

© To the right (0S) of the selected element Cancel
O To the left (IS) of the selected element
Help

Ready

Figure 15.  The schematic element to the left of the insertion point for a stepped-line transformer must be selected
before the wizard is launched.

\) Analysis Artwork ADWKlopfensteinTaper_DSLT.ani - Ampsa Amplifier Design Wizard (V22H) - m] X
| Views | Analysis  Optimization  ArworkEditing  Artwork Options Project - Schematic ~ Artwork ~ Export - Microstrip ~ Preferences ~ Miews ~ Windgw ~ 7 (@
=T Schematicview ; [[8 Text view to schematic | "M Schematic and artwork
&5 Artwork view - [f Scroll onjoff 43, Artwork and schematic
[E] Text view - 5 Copy active view [ Test and schematic
Active View | Tacking View |
JoAdBSDE %807 @ +
ADWKlopfensteinTaper_DSLT.ani - Artwork | - ADWKlopfensteinTaper_DSLT.ani - Gain and Input Reflection Graph  x -

Scale Factor = 0.214x (68.71E3um x 14 25E3um)

ADWKLOPFENSTENTAPER_DSLT

- fil i) A AN

B L S AVAVAN AN VAVATA A

. ! TIVEIRITR TR IS

- [[MANK T [ ]..

. TN :

o AR e
i \y

Ready |

Figure 16. A Klopfenstein [11] stepped-line taper designed by using the DSLT wizard. The gain and the reflection
coefficient are also shown here.
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Figure 17. A geometric-mean equivalent for the Klopfenstein stepped-line taper in Figure 16.

The taper can be edited to be continuous by joining the corners of the taper sections. Keeping the
transformer in stepped form can, however, be advantageous - The lengths of the stepped lines can be
optimized to improve the performance of the circuit in which it is embedded. This includes adjusting
the section lengths to reduce the effects of the step discontinuities.

An equivalent geometric mean taper is shown in Figure 17, with the associated gain and reflection
coefficients. The length of this taper is 66mm. The taper length can be increased to improve the
performance at the lower frequencies in the passband (Taper Length Scale Factor in Figure 14). The
factor by which the length should be increased can be set to the ratio of the first frequency with
acceptable performance to the lowest passband frequency. The reference points for this taper are the
centres of the segments.

The Matching module is usually used to solve matching problems in the ADW. The synthesis
algorithm for non-commensurate distributed networks was extended recently to introduce harmonic
traps (transmission zeros) in the synthesized matching networks. The importance of traps in the
control of the harmonic performance was illustrated in [12] with a matching network based on an
elliptical filter prototype. The results shown in [13] for a 1.0 — 3.8 GHz 10W power amplifier are
also impressive.

To provide the extended control, a shunt capacitive branch or a shunt inductive branch in a non-
commensurate distributed ADW matching network can now be designed for resonance at the
transmission-null (attenuation pole) frequency specified while still providing the reactance required
at the fundamental-frequency of interest (See Figure 18). Different trap frequencies can be specified
for shorted-stub branches and open-ended stub branches.

The electrical line lengths are fixed in commensurate networks and the characteristic impedances are
the variables. (In the ADW, different lengths can be used for the main-line sections, the open-ended
stubs, and the shorted stubs.) The stub lengths can, therefore, be set for trapping. The characteristic



impedance is set to provide the reactance required at the transformation-Q frequency. (That is, if the
characteristic impedance required is inside the range targeted.)
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Figure 18. Distributed traps based on shorted and open-ended stubs, respectively. Each of these traps
provides resonance at the trap frequency targeted and presents the shunt impedance required at
the transformation-Q frequency.

The short or open presented by a harmonic trap should ideally be transformed to the intrinsic
harmonic load impedance required [13]. A phase-controlled matching network can be designed for
this purpose, but a series connected transmission line may suffice. The parameters of the series lines
required for several second harmonic and third-harmonic traps are listed in the ADW when the CIL
wizard is used.

Ideally, harmonic traps should not affect the fundamental frequencies. The loading effect of the traps
at the fundamental frequencies are also listed in the ADW. When the loading is light and the line
required for transforming the transmission-null impedance to the desired intrinsic load impedance is
electrically short, the trap can be added to the circuit before a matching network is designed.
However, better results are frequently obtained if the traps are part of the matching network instead.

The impedance-matching targets in the ADW are defined at the insertion point for the matching
network. Multiple solutions are provided to each matching problem and knowing the intrinsic load
terminations associated with each solution makes it much easier to select the best solution. This
feature was introduced in Version 21 of the ADW. The intrinsic and external reflection coefficients
of a wideband ADW matching network (Passband: 1.0 — 3.9 GHz) are compared in Figure 19. The
behaviour is essentially Class-B (with reduced second-harmonic content) over the whole band (1.0 —
11.7 GHz).
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Figure 19. The intrinsic and external reflection coefficients for a wideband matching network are compared here

(Passband: 1.0 — 3.9 GHz). The input reflection coefficient traces shown are for 1.0 — 11.7 GHz.

An example of an ADW amplifier with harmonic traps is shown in Figure 20. The intrinsic load
reflection coefficients presented to the transistor are also shown

The ADW was developed to design impedance-matching networks and single-ended amplifiers.
However, many amplifier configurations can be transformed to single-ended equivalents. These
include push-pull stages, balanced amplifiers, amplifiers using symmetrical combinations networks
(see Figure 21) and Doherty configurations (see Figure 22).

Zuacr and Zpge in Figure 21 are ideal transformers used to restore the impedance levels in the single-
stage circuit to those in the original circuit. T-section models are used for the microstrip T-junctions.
The transistor voltages and currents in this circuit and in the original circuit are identical. If a driver
amplifier is used, the power extracted from the single-stage equivalent, as well as the dc current



required by it, must be multiplied by four in the example shown. This is required to keep the
efficiency calculations in agreement.
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An example of a wideband ADW amplifier with harmonic traps. The passband is 1.0 — 3.9 GHz. The
intrinsic load reflection coefficients presented to the transistor by the matching network are also shown

here.

Figure 20.
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Figure 21. Illustration of the modifications required to simplify the design of a power stage with symmetrical
combining networks to a single-ended design.



When a Doherty amplifier is designed, the ratio of the main amplifier current and the peaking
amplifier current at the summing node can be used to simplify the design to designing two single-
ended amplifiers (see Figure 22). The load matching network for the main amplifier is designed to
provide the required output power at two drive levels (peak power and medium power) with
maximum or high efficiency targeted at both power levels. The matching network is, therefore,
required to solve two different matching problems at the same time. Fortunately, the load
terminations for the two problems are different. (Load modulation by the auxiliary amplifier when
the power delivered is above the medium power level.) In the ADW, slight offsets in the frequencies
of the two matching problems are used to integrate the two problems into one.
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Figure 22. Illustration of the process to simplify the design of a Doherty amplifier to designing two single-ended

amplifiers. The matching network for the main amplifier must solve two different matching problems at the
same time (a = 1/y, as well as o = 1).

In linear amplifiers, transistor behaviour is mostly linear up to the point at which a transistor starts to
run out of voltage or current. The output power at this point is the maximum unclipped output power
(Pmuc). The transistor behaviour will become more non-linear as the transistor is driven into
compression.

The output power obtained from a transistor is a strong function of the maximum unclipped output
power. At this power level the intrinsic load line will clip one of the boundary lines specified to
define the allowable load-line area for the transistor in the intrinsic I/V-plane [1]. Up to five boundary
lines can be specified in the ADW. (The fifth boundary line is used to approximate the curved upper-
left corner of the transistor knee.) Pulsed or dc I/V-curves can be used to define these boundaries. If
I/V-curves are not available, the information provided in the data sheet can be used to set approximate



boundaries. When measured or harmonic-balance results are available, the boundaries used can be
adjusted to improve the correlation.

Note that the intrinsic load terminations will be different for different classes of operation. In the
ADW, the intrinsic load terminations are mapped to the external terminations by using power
parameters [2]. These parameters are derived from the ADW model fitted to the transistor. Under the
assumption of linearity, the mapping is exact.

Pmuc IS used with the expected saturated output power (Psat) and an assumed compression curve [3]
to estimate the actual output power, as well as the gain compression associated with the input power
specified.

A transistor is modelled in the ADW with a set of S-parameters (typically class A/B), a linear model
fitted to these parameters, 1/V-plane boundary lines, the harmonic content specified for the different
base modes of operation (Class-A, Class-B, Class-F, inverse Class-F and Class-B2) and a few fitting
factors. Up to five harmonics (fundamental included) are allowed in the ADW.

The main fitting factors are the difference between P and Pmuc (Psu), and the compression efficiency
fitting factor (CmprEfc). Typical values for Ps, are around 3 dBm for Class-B and Class-F and around
0.5dBm to 1.0dBm for inverse class-F. When the output power (Po) is higher than the maximum
unclipped output power, the dc current is assumed to be the dc current at the maximum unclipped
point scaled by a factor POWER][(Po/Pmuc), CmprEfc]. Below the maximum unclipped power level,
the maximum unclipped dc current is scaled by a factor POWER[(Po/Pmuc), 0.5]. (Derived from: P,
=IPR=V2G)

The range allowed for CmprEfc is [-0.5; 1.25], with 0.75 the typical value for Class-B and Class-F,
and 0.0 the typical value for Class-B2 and inverse Class-F. When CmprEfc=1.0, the dc current will
increase linearly with the power ratio (Po/Pmuc). When CmprEfc=0.0, the dc current will not change,
and when CmprEfc < 0.0, the dc current will be lower than the dc current at the maximum unclipped
power level.

The load-line boundaries, the harmonic content and the fitting factors can be modified to improve
the fit with measurements, or the results obtained in a harmonic-balance simulation.

The output driving waveform in a Class-B or a Class-F amplifier stage is the intrinsic output current,
while the intrinsic output voltage is the output driving waveform in an inverse Class-F or a Class-B2
stage. The driving waveform is usually taken to be an ideal or an approximate half-sinusoid. The
better option is usually to use the approximate half-sinusoid (limited to dc, fundamental-frequency,
and second-harmonic components). The results obtained with a perfect half-sinusoid are usually
optimistic.

With ideal load terminations, third-harmonic wave-shaping components in the output response
waveform do not affect the output driving waveform. However, with non-ideal third-harmonic
terminations and assuming linearity, a third-harmonic component is required in the driving waveform
to create the third-harmonic component in the response waveform. (This also applies to higher
harmonics.) It follows that the driving waveform will then be distorted by any components generated
in the response waveform. (The distortion will be associated with a reduction in the component
causing the distortion.) In the ADW, the distortion can be ignored, or can be clipped to a specified
level (typically 1% of the fundamental-frequency output driving waveform current or voltage). The
distortion is limited by clipping the harmonic content generated. Note that some of the wave-shaping
components can originate in the nonlinear capacitors instead of the output driving waveform.
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Figure 23. The mode-switching options provided in the ADW. Use the Project | Transistor Models Used ribbon
command provided in the Analysis module to open this wizard.
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Figure 24. The intrinsic load reflection coefficients presented by two ADW matching networks are compared with the
reflection coefficients calculated in Microwave Office™.



The mode of operation in an ADW circuit can be assumed to be fixed at all the frequencies of interest
(passband), or mode switching can be allowed (See Figure 23). When mode switching is allowed,
the intrinsic impedance presented to the transistor at the frequency of interest can be used to
automatically assign a mode of operation at that frequency. When the intrinsic load terminations do
not point to any specific mode (strongly resistive harmonic terminations or strongly reactive intrinsic
terminations which are not balanced by continuous-mode operation) class-B operation is assumed in
the ADW. Options to use the mode which will yield the highest power or the highest efficiency with
the assumed harmonic content are also provided (refer to Figure 23).

Allowance is made for user-defined mode-switching (see Figure 23). Up to two mode-switching
frequencies can be specified (three modes). The fitting factors used for the different modes should
be adjusted for smooth transitions at the transition frequencies.
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Figure 25. ADW dynamic load lines constrained by five boundary lines.
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When an ADW circuit is analyzed or tuned, the intrinsic load reflection coefficients and the dynamic
load-lines, as well as the intrinsic output voltage and current can be displayed graphically (see Figures
24 — 26). Five boundary lines were used in the example shown in Figure 25, while four lines were
used in Figure 26. The Microwave Office™ load-lines for the Figure 26 example are also shown in
Figure 26.

Note that the intrinsic load terminations can also be optimized when the power performance is
optimized. The intrinsic load terminations calculated in the ADW generally correlates very well with
the terminations obtained in a harmonic-balance simulation (See Figure 24).

The dynamic load lines for a Class-B stage, a Class-F stage and an inverse Class-F stage are shown
in Figure 27. The load lines were obtained by optimizing the power performance in each of the
associated circuits. The circuits were setup to control the intrinsic load impedances presented to the
transistor at the fundamental-frequencies and at the second and third harmonics, independently (load-

pull).

Figure 27.  ADW dynamic load lines for Class-B, Class-F, and inverse Class-F modes.

Figure 28.  ADW dynamic load lines for continuous Class-B, Class-F, and inverse Class-F modes.

Continuous-mode operation is allowed in the ADW (continuous Class-B, Class-F, and inverse Class-
F). The continuous-mode phenomenon is essentially a linear process in which the detrimental effect
of fundamental-frequency reactance or susceptance on the power and the efficiency is cancelled by
second-harmonic reactance or susceptance of the opposite sign and the correct magnitude. Full
cancellation is only possible up to a specific fundamental-frequency Q-value (X.i/Rvi ratio) for the
mode considered, but the detrimental effect can still be reduced for higher Q-values. The same power
and efficiency can, however, not be maintained when the Q-value is out of range.

The dynamic load lines for continuous versions of the Figure 27 stages are shown in Figure 28. The
Q-factors for the fundamental-frequencies impedances were around 0.5. Note the higher voltage
swings for the continuous Class-B and continuous Class-F modes. (The maximum currents did not



change significantly.) The output power and the efficiency for the base-class and the continuous-
mode versions of the Class-B and the Class-F stages are the same.

Note that the peak intrinsic voltage or the peak intrinsic current associated with continuous-mode
operation is higher than that associated with base-class operation. The peak voltage is higher for
continuous Class-B and continuous Class-F operation, while the current is higher for continuous
inverse Class-F. When the current is increased, the transistor knee will reduce the benefits of
continuous-mode operation (see Figure 28).

Because of the knee, the performance of the inverse Class-F stage is degraded with continuous mode
operation (higher current). The curvature in the knee aggravates the degrading effect.

Note that the slopes in the maximum current boundaries could have been reduced in these examples,
but the downward sloping boundaries are useful for avoiding higher power dissipation areas.

The circuits used to create the graphs in Figure 27 are also useful when an ADW model is fitted to a
transistor. The performance in the ADW can be compared to measurements or the performance
obtained in a harmonic-balance simulation, and corrections can then be made to the ADW model to
improve the correlation.

When a model has been fitted to the transistor, the Figure 27 circuits can also be used to establish the
range of intrinsic or external harmonic reflection coefficients over which the performance targeted
can be achieved (load-pull). Note that when power contours and efficiency lines are generated with
the CIL wizard, the harmonics are assumed to be the ideal harmonics for the class of operation
assumed.

The circuit shown in Figure 29 was used to find the optimum Class-F harmonic terminations for the
transistor used. The transformers shown are used to control the harmonic terminations presented to
the transistor. The transformer on the load side transforms the load impedance of the circuit to the
required level inside the passband and presents an open at the insertion point in the circuit outside
the passband. The centre transformer performs similarly for the second harmonic — It presents an
open outside the second-harmonic band and the stub impedance inside the second-harmonic band.
The transformer on the left sets the third-harmonic terminations. The lossless series LC resonator to
the left of the fundamental-frequency transformer controls the external fundamental-frequency
reactance presented to the transistor.

Note the sliders provided in the summary tables shown in Figure 29. The value of the element selected
in the schematic when the summary table is opened (Analysis | Summary Table ribbon command)
can be tuned with the slider. The element selected must be set for optimization (Optimization |
Optimize Element ribbon command). Any optimization bounds set for the variable will be used but
can be overridden by the tuner (Close the summary table when a limit has been reached and re-open
it - the tuning range will be adjusted automatically).

One would expect that tuning the external resistance would have a strong effect on the intrinsic load
resistance (and similarly for the reactance). However, in this circuit and at the frequency of interest,
the external resistance has a strong effect on the intrinsic load reactance, while the external reactance
has a strong effect on the intrinsic load resistance. The reason for this can be deduced from Figure
19.

The circuit shown in Figure 29 was first optimized for optimum Class-F performance (P,=43.5dBm,
n=85%). The second-harmonic termination was then tuned up and down to the 75% efficiency points
with the optimum fundamental-frequency and third-harmonic terminations in place. Finally, the



effect of the third-harmonic termination was established at each of the three second-harmonic points.
The third-harmonic effect was not severe - The efficiency obtained was higher than 72% for all third-
harmonic terminations. (Only lossless external harmonic terminations were considered here, but
losses can be added, if necessary.) As to be expected, the worst performance was associated with the
second-harmonic terminations at the 75% points. The efficiency remained above 76% with the
optimum fundamental-frequency and second-harmonic terminations in place.
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Figure 29. The range of purely reactive intrinsic second-harmonic reflection coefficients over which the efficiency for
the Class-F stage in Figure 27 will be above 75%.

When the external terminations are tuned, the rate at which the intrinsic reflection coefficients change
can be very high over sections of the tuning range (high Q). Because of this sensitivity it would be
advisable to avoid these sections when possible. (Scale the optimization range down to counteract
the sensitivity.)
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Figure 30. The tuning features in the ADW were used to find the range of second-harmonic reactance values to be
targeted with a Class-B load in this example.



A second example of using the tuning features in the ADW to find the range of second-harmonic
reactance values to be targeted with a selected fundamental-frequency load is provided in Figure 30.
The class of operation in this example is Class-B.

The intrinsic load impedances presented to the transistors are the focal point in a typical ADW design.
This also applies when load matching networks are synthesized for an amplifier stage in the
Impedance-Matching module. (See Figure 19 for an example.) Knowing the intrinsic load
terminations associated with a matching network makes it much easier to decide on the best solution
to the problem. If the intrinsic harmonic terminations are too far off-target, the mode of operation
assumed when the impedance-matching targets were set may not be valid anymore.

Note the anti-clockwise rotation from external to intrinsic in Figure 19, as well as the tighter bundling
of the intrinsic reflection coefficients. At the lower passband frequencies, the harmonic terminations
in this example are highly resistive (the harmonic bands and the passband overlap) and the assumed
mode is then Class-B with reduced second-harmonic current content. At the higher frequencies in the
passband the mode tends to be closer to ideal Class-B.

ADW matching networks are usually designed with targets set up under the assumption of linearity.
(The circuits associated with Figure 27 could also be used to define targets with Cgs nonlinear.) In
the final stages of an ADW design, Cgs should be set to be non-linear, and the linear and non-linear
performances of the circuit should be compared. If necessary, the circuit can be optimized to improve
the non-linear performance.

The coefficients for a typical Cgs profile can be specified for each transistor in an ADW circuit. This
profile is used when the Assume Linearity Project option is unclicked (Project | Options ribbon
command in the Analysis module). Fourier analysis is used to calculate the currents associated with
the Cqs voltage waveform. The currents are calculated at the maximum unclipped power level.

The linear and non-linear intrinsic dynamic load lines for the first single-stage amplifier shown in [5]
are compared in Figure 31. Note that the nonlinear load lines are closer to the knee and that the
maximum voltages are also slightly higher. The power level for these dynamic load lines is the
maximum unclipped output power.
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Figure 31. The linear and nonlinear intrinsic load lines for the circuit designed in [5] are compared here.

When a matching network is designed, the discontinuities in the design and the parasitic elements
associated with the lumped-element components could move the impedances presented by the



matching network off-target. It is, therefore, important to keep the discontinuities and the parasitic
elements in mind when a matching network is designed.

Implicit or explicit microstrip junctions can be used in the ADW. Implicit junctions do not affect the
ADW circuit performance but will affect the dimensions of the lines in the artwork created for the
electrical circuit. Note that the electrical circuit (schematic) is simulated in the ADW and not the
artwork. When the artwork is created, the geometrical lengths of the lines associated with implicit
junctions are adjusted automatically by using the information available in Hammerstad microstrip
models [14]. The transformer and loading effects in the Hammerstad T-junction model are ignored
when these adjustments are made.

The performance of the ADW artwork will not be identical to that of the electrical circuit (schematic)
and adjustments may be required in the artwork or the ADW models used to improve the correlation.
Scale factors are used in the ADW discontinuity models to allow for optimization of these models.
EM simulation of a junction is required to set the targets for the optimization.

An ADW circuit with implicit junctions can be transformed automatically to have explicit junctions
by using the Artwork | Export Options | Convert Implicit Junctions ribbon command. Hammerstad
[14], Gopinath [15] or S-parameter based junctions can be used in the exported circuit. S-parameter
based step, curve, bend, T-junction, and cross junction commands are provided in the ADW.

When the S-parameter based export option has been selected (see Figure 32), ADW circuit files (.ani)
will be created automatically in the Export Folder for all the discontinuities (steps, rectangular bends,
mitred rectangular bends, curves, T-junctions, and crosses) in the circuit. These files can be used to
export the artwork required for the EM simulations (.son, .dxf or .bas files). The file names are set to
make the process efficient. The root part of the name assigned to the S-parameter file exported from
the EM simulator (.s2p, .s3p or .s4) should be the same as the name of the file created by the ADW.
The ADW is setup to extract the junction information from the assigned name when the EM S-
parameters for a junction are imported (Schematic | Junctions | Import S-parameters ribbon
command).

Microstrip Conversion Options x

File Name:

CAUsers\USER\Documents\Ampsalampsas D21 HExamples\Power Amplifiers\Cree1 VAT &

T-junction | Cross Model To Use
Uze S-parameter based steps
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ﬂ Uze S-parameter based mitred bends
S-parameter based

Use S-parameter based curves

Reference Lines For De-embedding

. . Artwork Resolution:
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Figure 32. The microstrip options provided when an ADW circuit with implicit junctions is converted to have explicit
junctions.



Note that it is very easy to change the substrate in the ADW when explicit junctions are not used. It
is, therefore, advisable to delay using explicit junctions until it has been established that the substrate
chosen is a good choice for the circuit designed.

The best way to minimize EM issues with circuits designed in the ADW is to replace the implicit or
standard junctions in the final ADW design with S-parameters based junctions. (It is also necessary
to allow sufficient spacing between the different junctions.) With the junctions sorted out, the ADW
network can then be optimized to restore the performance before it is exported for EM (and harmonic-
balance) simulation and optimization.

Reverse optimization may also be an option for adjusting the ADW artwork. Each matching network
designed in the ADW is then analyzed in an EM simulator and the EM S-parameters are used as
targets to optimize the ADW network. When the ADW circuit components are updated after the
optimization, the changes to be made to the circuit are then applied in reverse (that is, if a line is
required to be longer, it is made shorter instead). The performance of the modified artwork in the EM
simulator will generally be closer to the performance of the original ADW schematic.

Choosing a suitable substrate and constraining the characteristic impedances adequately are
important when a matching network is designed, especially when harmonic control is also required.
EM simulations provide the feedback to select a better substrate and to tighten or reduce the
constraints on the characteristic impedances. Using thick metal in the EM simulations is advisable
and care should also be taken with the loss factor used for the substrate. (The loss factor could
increase significantly with increasing frequency.) Box resonances in the harmonic bands of interest
should also be avoided. Using the free space option for the cover could suppress box resonances.
Another option could be to use absorber material.

Ideally, the ADW should be used with Microwave Office™ (MWO) or ADS™. ADW networks
(electrical or microstrip) can be exported to MWO via basic scripts (.bas), so this is the recommended
option. ADS users can import the ADW artwork into Momentum™ via DXF, while S-parameter
equivalents for the matching networks can be used to verify the electrical performance obtained in
the ADW. The ADW can also create Sonnet® files (.son) for the artwork. The Sonnet files created
also provide another path into ADS or MWO.

An ADW circuit can be exported to Microwave Office™ in distributed or in microstrip form. It is
advisable to export the distributed (electrical) ADW circuit first. Adjustments in the ADW transistor
models may be required and if so, the difference between the discontinuity models used will cloud
the process. The harmonic content assumed in the ADW may also differ from the harmonic content
in the harmonic-balance simulation. The difference will generally be small if the intrinsic load
terminations of the circuit designed in the ADW are well-behaved.

Note that the harmonic content specified for a transistor in the ADW can be optimized to provide a
closer fit to the measured or the harmonic-balance performance. This option is provided when the
Optimization wizard is launched (See Figure 33). Note that the Output Power option must be selected
when the harmonic content is optimized.

When a microstrip circuit has been exported to Microwave Office™ or ADS™, it is good practice to
first optimize each matching network to have the same S-parameters as in the ADW. This is usually
not required when S-parameter based commands were used for the discontinuities in the ADW
circuit. When optimization or tuning is required, good results can usually be obtained by optimising
or tuning the lengths of the lines associated with the discontinuities (differences in the reference



planes). When the lines associated with T-junctions or cross junctions are optimized, the stub lengths
are usually more important than the lengths of the main-line sections.

Select the ADW Artwork | Artwork Options | Artwork Options ribbon command to set the option to
use X-models when an ADW circuit is exported to Microwave Office™.

Optimization Wizard %

In ander to optimize a circult an emor function must be specfied
first. This wizard will help you to set up the required emor function.
The first step is to select the parameters to be optimized from the
list provided below.

Peformance to be optimized

() Pawer gain
[CJVSWRs
() Stabiity factor )
[T Source stabilty factor (S5F)
() Load stabilty factor (LSF)
() Group delay

Moise figure

ﬂﬁum Power

[ Ned> Cancel Hebp

Figure 33. The option to optimize the harmonic content instead of the circuit is provided when the optimization wizard
is launched.

Synthesis of impedance-matching networks in the ADW is based on systematic searches on the
transformation-Qs of the matching networks [2].

Fundamental-frequency circular area targets Examples of harmonic sectors.

Figure 34. Circular fundamental-frequency areas and Smith chart sectors (harmonic sectors) can be targeted in the
ADW impedance-matching module.

When commensurate networks are synthesized, the electrical line lengths are specified by the user
and the characteristic impedances are the variables. When non-commensurate networks are
synthesized, the characteristic impedances are specified by the user and the line lengths are the



variables. A systematic search can be done to find the optimum main-line line length when
commensurate networks are synthesized, or the optimum main-line characteristic impedance when
non-commensurate networks are synthesized. This eliminates the manual experimentation required
previously.

When a matching network is synthesized, a point (point match) or a circular area (circle match) can
be targeted at each fundamental frequency, while harmonic sectors can be targeted at the harmonic
frequencies (see Figure 34). The area of each harmonic sector is defined by two intersecting lines,
the Smith chart edge, and the sequence in which the two Smith chart edge intersects are specified.
The intersect of the two lines (local origin) must be inside the Smith chart and rotation from the first
to the second point is assumed to be clockwise. (A to B in Figure 34. The complementary area will
be targeted if point B is specified as the first point.)

Harmonic traps (attenuation poles; [12]) can be introduced in the design by adding fixed-element
sections to the circuit before the matching network is synthesized (Specifications | Terminations |
Fixed Elements command in the Matching module). Information on potential second-harmonic and
third-harmonic traps is provided during the load-pull phase (CIL wizard). The viability of each of
these traps is also considered when this is done. A harmonic trap will not be useful if it loads the
fundamental frequencies significantly.
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Figure 35. The list of potential traps provided by the CIL wizard. Different options can be selected on the page. Use

the Re-Calculate command to update the table.




When possible, a trap should be used with a series-connected transmission line to transform the short
or open associated with the trap to the intrinsic load impedance required at the trap frequency [13].
If the required line is electrically short and the fundamental-frequency loading is not severe, the trap
could be added to the circuit before the matching network is synthesized. Information on the
transforming line required for each trap is also listed in the table created during the load-pull phase
(see Figure 35).

Up to two traps can be selected from the trap table. If two traps are selected, one must be on the input
side (IS) of the matching network (short main-line section), while the other must be on the output
side (OS; longer main-line section). The side is decided by the specification for the Maximum Main-
line Length for an Input Side Trap specification (see Figure 35). Note the option to export the selected
traps directly to the circuit file. If this option is not selected, the next step will be to synthesize the
load matching network.

An open-ended stub (90° long at the trap frequency) or a shorted stub (180° long at the trap frequency)
can be used to provide the transmission null required at a trap frequency. The default is to use an
open-ended stub. Click the SST option provided in the table to switch to using a shorted stub.

If ZOOST Stepped Line in the table is specified to be different from Z0OST, the open-ended stubs will
be replaced with shunt branches consisting of a connecting line terminated in an open-ended stub.
The electrical lengths of the two lines will be the same and will be set to provide resonance at the
trap frequency.

Distributed/Microstrip Networks Wizard - Z0's

|

[ The characteristic impedance of the lines to be used are listed here. The line lengths will be used as
variables. The minimum and maximum length to be used for the main line sections are listed too. The
minimum length specification is important when stubs can overdap. When distributed networks are
required, the characteristic impedances and line lengths should be modified on this page, f necessary.
If the associated dimensions were specified previously for microstrip netwarks, the values listed
should be inspected to ensure that the specifications made are realistic.
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Figure 36.
network.

The specifications to be made for the distributed components in a non-commensurate distributed matching




The input side (IS) third-harmonic trap (H) selected in Figure 36, will provide a transmission null at
11.7GHz. The transmission line required to transform the harmonic short to the intrinsic impedance
required for Class-B operation is relatively short (18.285° at 3.9GHz) and the fundamental loading
is higher than 86.6Q. The fundamental impedances on the input side of the matching network to be
designed vary from around 28 Q to around 16 Q. The fundamental-frequency loading by this trap
will, therefore, be light. The worst-case Q-factors (X/R) of the source terminations (wcQs) and load
terminations (wcQL) of the matching network will be degraded from 0.19 to 0.32, and 0.0 to 0.58,
respectively. The loading effect from a Q perspective is, therefore, also small.

The synthesis algorithm for non-commensurate networks was enhanced to provide for traps in the
synthesized matching networks. (In commensurate networks the electrical line lengths are controlled,
and the stub lengths can, therefore, be set for trapping.) Shunt capacitive branches (OST branches)
or shunt inductive branches (SST branches) in a matching network can now control the fundamental-
frequency performance and can also provide resonance at the transmission-null frequency specified.

Different resonant frequencies can be specified in the ADW for the capacitive branches and the
inductive branches (See Figure 36). The trap frequency for inductive branches must be lower than
the trap frequency for the capacitive branches. If the resonance frequency is specified to be higher
than five times the highest passband frequency, only the fundamental frequency performance will be
controlled.

When a shunt capacitive branch is designed, a connecting line terminated in an open-ended stub is
used to provide the dual control [12, 13]. The default characteristic impedance and length of the
connecting line can be modified by the user, while the electrical length and the characteristic
impedance of the open-ended stub are the variables. When it is not possible to provide dual control,
only the fundamental-frequency performance will be controlled.

[ Distributed/Microstrip Networks Wizard - Capacitor and Inductor Options X |

Parasitic Components

The option to use shunt parallelplate capacitors instead of open-ended stubs or shunt capacitors is
provided here. The parasitic inductance or resonant frequency of any regular capacitors or the parasitic
capacitance or resonant frequency to be used for any inductor in the matching network can also be
specified here. The option to use shunt capacitors as hammonic traps is also provided.
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Figure 37. The options provided for the lumped elements in a mixed lumped/distributed matching network.



Each shorted-stub branch can be complemented with an open-ended stub branch to provide dual
control. The length of the shorted stub is set to provide the transmission null required (similar to the
commensurate case). The complementary open-ended stub branch is used to modify the fundamental-
frequency impedance of the shorted stub to the impedance required.

It is usually advisable to set the characteristic impedances for the shorted stubs as high as possible.
OST Z0 should be on the low side but is limited by the associated main-line discontinuity effects.
Z0OST Minimum and Z0OST Maximum in Figure 36 apply to the open-ended stub termination of a
shunt capacitive branch.

The functionality described above is also provided when shunt-connected capacitors or series-
connected inductors are used. Parasitic inductance is added to a shunt-connected capacitor for this
purpose, while parasitic capacitance is added to a series-connected inductor (See Figure 37). Short-
circuit transmission nulls are associated with the shunt capacitors, while open-circuit nulls are
associated with the series connected inductors. When the transmission-null option is not selected, the
parasitics specified for the lumped components can be fixed or can be calculated from the resonant
frequency specified for the component type (capacitor or inductor).

A matching network with traps was shown in Figure 19 above. The trap specifications used are shown
in Figure 38 (Passband: 1.0 — 3.9GHz). Note the 42Q 10° line on the input side of the matching
network (Figure 19). This is a fixed component added to rotate the intrinsic impedance obtained with
the matching network clockwise.

| Distributed/Microstrip Networks Wizard - Capacitor and Inductor Options x| | Distributed/Microstrip Networks Wizard - Z0's x|

Parasitic Components
The characteristic impedance of the lines to be used are listed here. The line lengths will be used as

The t hunt llel-plat itors instead of ded stub: hurt itors i
e T i Coradi D wvariables. The minimum and maximum length to be used for the main line sections are listed too. The

provided hers. The parasitic inductanc or resonant frequency of any regular capacitors or the parasitic

capacitance or resonant frequency to be used for any inductor in the matching network can also be i minimum length specification is important when stubs can overtap. When distrbuted networks are

specified here. The option to use shunt capactors as hamonic traps is also provided required, the charactenistic impedances and line lengths should be modified on this page, f necessary.
If the associated dimensions were specified previously for microstrip networks, the values listed

Parasitics | should be inspected to ensure that the specifications made are realistic.

Capacitor Inductance or Resonant Frequency Inductance Capacitance or Resonant Frequency Stub Parameters

Hamonic Traps

sSTZD: SST ResFra (GHz):

() Specify inductance (nH)

° Spectty companent resonant frequency (Fr_ GHzE © Specify capacitance (pF) 65.00 Ohm 1000
() Specify trap resonant frequency (FTr_GHz) too o T | ST 051 R o
Fr_GHz FTr_GHz: clectrical length E
1500000 GHz GHz 0.000 PF | ETIEEEET 50.00 . n
| Input side 0. Output side Z0k OSTCMLlength ()
No parastics for series capacitors | [35.00 Ohm 35,00 Ohm OST 20 (SST Z0Min) at FpsbH [2°: 257
40.00 Ohm 6.0000
Migimum length Maximum length =
Paralel-Plate Capacitors | 2000 . 155,00 N are SZTD“’[‘;;'NUW
([ Use shurt parallel-plate capacitors Via hole inductance: | FpsbH - 3.900GHz electrical length:
| e 65,00 Z00ST Maximum
Pad width (um) Pad length (L; um) 0 nH | 4P 6500
500.00 1.00E3 |
| Maindine Z0 Search
Pad Z0 (Ohm} Pad length () ML Z0 minimum ML Z0 maximum ML Z0 step:
000 000 == (] Petform search 2500 Ohm 4500 Ohm 500 Ohm
FeBEEE [ Ory show optimum Z0 results
< Back Next > ] Cancel Help | < Back Next > ] Cancel Help
Figure 38. The traps specifications for the network shown in Figure 19.

An example of a power matching network designed without using the harmonic trap options is shown
in Figure 39. S-parameter based models were used for the microstrip junctions in the final version of
the circuit. The parasitic inductance for each capacitor was set to 0.3nH.

Basic distributed matching networks can now also be synthesized in the ADW by doing a two-
dimensional search on the transmission phase-shift and the main design parameter associated with
each of the network types allowed. The search is done on networks synthesized to provide the
required transmission-phase shift and a conjugate match at the passband frequency selected [10].



Circular fundamental-frequency matching areas are use as targets in the passband, while Smith chart
sectors are targeted at the second and third harmonic frequencies.
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Figure 39. The artwork of an ADW matching network designed by using S-parameter based models for the microstrip
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Figure 40. The CMA option provided by the I1M wizard is used to design phase-controlled matching networks in the
ADW.

Use the CMA matching option provided by the IIM wizard to synthesize phase-controlled matching
networks. The insertion point for the matching network must be selected before launching the 11M
wizard. The CMA options provided are shown in Figure 41.

The network types allowed when the transmission phase-shift is controlled are non-commensurate or
commensurate T-networks (see Figures 42 — 44), Pl-networks and stepped lines. The shunt section(s)
of the T- or Pl-networks can be distributed or lumped (with pads for the lumped components), and
may consist of a single element, identical parallel elements, or resonating sections. When resonating
sections are used, the two-dimensional search becomes three-dimensional. The line length or the



characteristic impedance of a shunt line can be controlled by the user. The length should usually be
controlled when harmonic sectors are targeted.
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Figure 41. The CMA network options provided in the ADW.
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Figure 42. The main line of a commensurate T-network can be loaded with an open-ended stub, a shorted stub, or a
lumped equivalent with pads.
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Figure 43. The commensurate T-network topologies associated with the Parallel Shunt Elements option are shown
here.
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Figure 44. Non-commensurate T-network topologies associated with the resonating sections option selected.

The input reflection coefficients of a commensurate T-network are compared in Figure 45 with the
fundamental-frequency targets (F) and the harmonic targets (H2; H3). The original second harmonic
and third-harmonic markers are used in the comparison instead of the harmonic sectors fitted to these
markers. (The fitting is automatic in the ADW.)

Figure 45. Comparison of the input reflection coefficients presented by commensurate T-network with the
fundamental-frequency targets (F) and the harmonic targets (H2; H3).

The reflection coefficients of a passive network can only rotate clockwise. It is, however, possible to
obtain approximate anti-clockwise behaviour with resonant loops in the reflection coefficient trace
(see Figure 47). If the design parameters for the mode are set for anti-clockwise rotation of the
fundamental-frequency reflection coefficients with increasing frequency, clockwise rotation of the
harmonic targets will not be an issue. To get the output power close to the expected level, the correct
harmonic roll-off will also be required.



Export Option x

D Export the solution as a standard ADWVY circuit file
@ Setup the circuit file for impedance-matching optimization in the ADW

D Setup a load-pull or source-pull file for synthesis of CMA networks

Figure 46. The options provided when one of the solutions synthesized in the Matching module is exported to an ADW
circuit file (.ani).
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Figure 47. The input reflection coefficients of a matching network for fundamental-frequency targets that rotate anti-
clockwise with increasing frequency.

An alternative to anti-clockwise fundamental-frequency targets is to set all the fundamental-
frequency intrinsic targets to be inductive, with the second-harmonic targets capacitive. Depending
on the bandwidth, this could yield some continuous-mode behaviour at all the frequencies of interest.
The design could be done for full cancellation at the centre frequency.

The continuous inverse Class-F mode example in [12] is a good example of the first approach. It
targeted anti-clockwise inductive reflection coefficients in the passband (Design parameter: [0,1]
initially and around [0, 0.5] for the network designed) and clockwise capacitive second-harmonic
reflection coefficients. The third-harmonic targets were also capacitive and were bundled in a narrow
range. The fundamental frequencies (1.4 to 2.5 GHz) did not overlap with the second harmonics in
this example. A second-harmonic trap at 2.8GHz was used to obtain the performance required.

The matching network designed in [12] is shown in Figure 48, with the input reflection coefficients
calculated in the ADW and Sonnet Software’s EM (thick metal; free space cover; third harmonic box



resonances were flagged with full or partial suppression because of the free space cover). S-parameter
based junction models were used in the ADW simulation. (The required S-parameters were generated
in Sonnet.) The intrinsic reflection coefficients associated with the matching network as calculated
in the ADW are shown in Figure 49. While the general trend correlates reasonably well with [12],
some tuning is required to get a better fit.
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Figure 48. The matching network designed in [12] to obtain continuous inverse class-F behaviour as analyzed in the
ADW with S-parameter based discontinuity models. The input reflection coefficients of the matching
network are compared with the input reflection coefficients obtained with Sonnet Software’s EM.
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Figure 49. The intrinsic reflection coefficients for the design presented in [12] as calculated in the ADW.

An example of a single-stage wideband 10W amplifier designed with ADW is provided in Figure 50.
The Wolfspeed CGH40010 was used in this example. Harmonic traps were used to get the wideband
performance. The intrinsic load reflection coefficients presented to the transistor and the dynamic
load lines are also shown in Figure 50. The performance is essentially Class-B (with reduced second-
harmonic content) over this very wide passband.

Note from the summary table shown in Figure 50 that the amplifier is conditionally stable at all the
frequencies considered (0.1 — 20 GHz; SSF > 0.95 and LSF > 0.90), where SSF is the source stability



factor and LSF the load stability factor. SSF and the LSF are generalized versions of mu-prime and
mu [16], respectively. Assuming arbitrary angles for the mismatch reflection coefficients, positive
values for SSF and LSF indicate how much the actual source or load termination can change

(expressed as a complex normalized reflection coefficient) before the circuit may become potentially
unstable.
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Figure 50. The ADW performance of a wideband 10W amplifier designed with harmonic traps. The passband is 1.0 —
3.9 GHz.

SSF and LSF are black box stability factors. When feedback is applied to a transistor the loop gain
provides additional insight into the stability of an amplifier or the behaviour of an oscillator. The
loop gain for each transistor (with feedback) in an ADW circuit can be calculated by using the Loop
Gain Analysis command provided. A Bode plot of the loop gain for a dielectric resonator oscillator
is shown in Figure 51. The phase of the gain is zero at two frequencies, but the loop gain is less than
zero (gain margin) at the first frequency. The capacitor in series with the dielectric puck is used to



prevent oscillation at the first frequency. Note the high slope in the phase at the oscillation frequency.
The horizontal red segments at the unity gain level are used to mark the frequencies with zero or
negative resistance in the feedback loop.
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Figure 51. The loop gain of a DRO oscillator is displayed here. Note that the tuning feature is active when the summary
table is opened on a variable marked for optimization.

Also note the summary table displayed in Figure 51. The frequencies at which the phase of the loop
gain is zero are listed in the table with the associated loop gain values. Up to ten zero crossings can
be listed. The tuning feature is also active when the loop gain is calculated. Insight into the behaviour
of the oscillator can be gained by tuning the components.

A geometric-mean taper is used in the ADW amplifier shown in Figure 52. A 45W Wolfspeed
CGH40045F was used in this example to design a wideband 30W amplifier (0.65 — 2.65GHz). The



power contours and maximum efficiency lines shown in Figure 6 were generated for this transistor.
The performance as analyzed in the ADW is shown in Figure 53.
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Figure 52. A 30W amplifier designed by using a geometric-mean stepped taper. The passband is 0.65 — 2.65 GHz.
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Figure 53.

The power and efficiency of the amplifier in Figure 52 as analyzed in the ADW. The intrinsic load

reflection coefficients are shown on the right (0.65 — 7.95GHz).
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